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Automated Reasoning I

1. Suppose a > b > ¢ > d. Determine how the following are ordered by the multi-set extension

> of >. Justify your answers.
(a) Si={a, c} and S,={a, c, d}

crossing out common occurrences of elements
Si={a, e} and S, ={a, e, d}
S ={} and S, = {d}
: S; >mu Sy
{a,c,d} >uu {a,c) v’

|(® Si={a,c} and S;={a, a, c, d} (

crossing out common occurrences of elements
81 ={a, e} andSz ={a, a, ¢, d}
={} and S, ={a, d}
Sy >mu S1

{a.3.¢d >y 8¢} L

[(©  Si=fa,a,c}and Sy~{a,a,c, d}

crossing out common occurrences of elements
S1={a, &, ¢} and S, ={a, 8, ¢, d}
S;={} and S, ={d}

Sy >l 81
{a’ a) C, d} >mu1 {aa aa C} /

l (d) Si1={a, c, ¢} and S,={a, a, ¢, d}

crossmg out common occurrences of elements

={a,¢,c} and S, ={a,a, e,d} ,
Sl—{c} and S; ={a,d) w% /
: Sz >uut St

fa.a ¢ d} >au {8 ¢ ¢} ( I ) ,

[ (e) S1={a, c} and S,={a, c, ¢, d}

crossing out common occurrences of elements
S;={a, €} and S, ={a, e, c, d}

Si={} and S, ={c, d}
Sy >ma Si \/

fa,c,¢c, & > fa.€}
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2. Transform each of the following into a set of clauses by first using the optimized structural
transformation which introduces a new symbol for each subformula which is disjunction.

@ ~pvq@v(=par

Standard structural transformation: (applying rules of Property 4)
Qo

A Qo — Qi Vv(=pAar)

A Q < (pv9

Optimized structural transformation: (applying rules of Property 5)

- * + (polarity of the subformulae)
—(pv@ Vv (=pAr)

Q Q

Qo
A QB — ~rvi=pag
A pvge— A \//
s0...

Q A Q - =SQuipan) A (rva - %)
Q A (=Qo v —=Qiv(=pA1) A =@vy Vv Q)
Q A (=Q v (Qiv-pA=QvD) A ((=pA—q Vv Q)
2 B (=Qo v =Qiv-p)A(=Qv =QivD) A((=pVv Q)A(=q Vv Q1)

Q A (=Q v -Qqiv-pPAr(=Qv -QivD A(=pv Q)Aa(-q Vv Q)
{[Qo], [-Qo; ~Q1; =Pl [-Qo; =Qu; 11 . [-p; Q] . [=q; Qil} |~

(b) —((=pvs)vq Vv(—~(=pVvs)Aar)

Standard structural transformation: (applying rules of Property 4)

Qo
A Q < (EQv(EBATD)
A G = GvY
A Q “— (-pvs)
A Q < (-pvVvs)

Optimized structural transformation: (applying rules of Property 5)
-+ (polarity of the subformulae)
—((-pvs)vq v(=(=pVvs)Ar)

Q Q Qs

Qo
A Q — (Qv(=QAD) vV
A (Qv9g = Oh s

+
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A (-pvs) — Q L
N C T B R

It is possible to further optimize, by noticing that Q2 and Q3 are equivalent

Qo
A Q —  (Qiv(E=QeaD)
A Qv =
A (-pvs) = iy \/

SO...

QA (Q— (QV(EQADNNA(Q: vg— QA ((-pVvs)—Q)

QA (QV QVEQRAMNAEQ: VvV QYA (= (=pVs)vQ)

QoA (=Qo Vv (-Q1v - QIA (FQivON A ((=Q2 A9 VvV Q) A (=P A—S) v Q)

QoA (=Qo Vv (~Q1vV - QIAQ VI A(=Q A=) vV Q) A((PA-S)V Q)

Qo A (=Qo v=Q1 vV = QA (=Qo vV =Qi v A (=Qav QDA (=qV QAP V Q) A (s v Q)
{[Qol , [Qo;-Q1; —Qal, [Qo; =Qi; 1], [-Q2; Qil.[—q; Qil,[p; Q. [-s; Ql} -
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3. Suppose the language ¥ includes the constants a, b, ¢ and one binary function symbol f.
Consider the following Herbrand interpretation.

1= {p(a), p(b), 9(2,b))}

I assume p( ), g(), and 1( ) are predicates, and are all valid symbols in language 2.

The Herbrand universe is Ty = {a,b,c,
fla,a), Aa,b), ...
fa, fa,a)), ...
f(fa,a), fa,a)), ...
fffa,a),a2), Aa,a)), ...
)
[ (a) Determine if the following (ground) clauses hold in /. Explain. J
L (@) v p(f(a,b))
Holds I E p(a), and the connective is v (so only one component of the

il

iii.

iv.

VI.

p(a) v —p(fla,b))
Holds

p(a) v —q(fla,b))
Holds

—-p(a) v ~q(fa,b))
Does not hold

—-p(a) v g(f{a,b))
Holds

—p(c) v q(f(a,2))
Holds

clause needs to be true)
(note: hence it doesn’t matter that / ¥ p(f{a,b)). \/

I E p(a) is true, and the connective is V. g
(note: also I = —p(fla,b), since I ¥ p(f(a,b),
but it is not necessary to consider this).

I E p(a) is true, and the connective is v. l/
(note: also I F ¢(fa,b)), so I ¥ —g(f(a,b)) ).

I ¥ —p(a), since I F p(a)

and \/

I ¥ —q(f{a,b)), since I F g(f(a,b))

I E g(f(a,b)) , and the connective is V. /
(note: I ¥ —p(a))

]
T :
I #ﬁ;}, gives / E —p(c), and the connective is v. \/

~(mote: I ¥ q(fla,a)))

Ale
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(b) Given I = {p(a), p(b), g(f(a,b))}. Determine if the following (non-ground) clauses hold in
1. Explain.

I assume additionally, x and y are variables, and are both valid symbols in language 2.

It is necessary to substitute each variable for each ground term in T generally looking for a case
that is a counter-example.

L p(x)
Does not hold since p(c) ¢ / \/

ii.  p(x)vp(d)
Holds since p(b) € I, and the connective is v \/
(note: I ¥ p(x))

iii. —p(x) :
Does not hold since / ¥ p(x), then ‘perhaps’ I F —p(x),
but I ¥ —p(a) since, p(a) €/
and I ¥ —p(b) since, p(b) € /

iv. px) v —p(b)
Does not hold since / ¥ p(x), from (1) /
and I ¥ —p(b), since p(b) € /

V. p(x) v —g(y)
Does not hold since I ¥ p(x), from (1) \/

and I ¥ —q(y), since g(fa,b)) € /

Vi. —r(x, b)
Holds I ¥ r(x, b) for all substitutions in x, then I £ —r(x, b) \/

v |

[0
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4. Find a “total ordering’ > on the ground atoms 4, B, C, D, E, such that the associated ‘clause
ordering’ >c orders the following clauses like this (and justify):

BvC >c AVAv-C >c CvE >c CvD > =AvD > =E

The relevant property is ... clause ordering: property 9 (i) and (ii) summarized below:

(i) Given c=QAvc and D=BvD with A maximal in C, and B maximal in D.
IfA> B,thenC> D
(i))Given C= v and D= @ vD’ with A maximal in C, and —A maximal in D.
thenC> D
CvD > —-AvD gives C » =t
gives € > \/
CvE > CvD gives B > D \/
—-AvD >c —F
and E > D gives —4 > —F '
sives A > £ \/
Byl » CvE gives B > E (notneeded)
BvC > CvD gives B > D (not needed)
BvC >c AvAv-aC
and C > 4
bat =€ > C = gives B > —C
gives B > C \/

Hence,
Bs Cos A e B g

Or more explicitly
—B> B> -C> C > 4> A> —E> E> =D > D

Checking that this is valid ...
Highlighting the maximal atom according to the ordering of ground atoms above

i [B]vC

2 Aviv|o0
3. EVE

4. ClvD

S. —-4|vD

6. ol

so, ordering the clauses according to the ordering of ground atoms above,
1>2>c3 >4 >35>
which, is as required
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5. Explain the importance of Property 11(v), in the proof of the model existence theorem
(Property 12).

The context of properties 11 and 12 is as follows:
- N is a set of ground clauses input into a model construction process.
- > is an ordering on the ground atoms, which is extended to ordering of the clauses.
- Iy is the final candidate model for N, with respect to >, created by model construction
Property 11(v) states: If in the clause C = C” v A produces A during model construction,
then Iy~ F C’ (otherwise the clause C’ v A would be true in I and non-productive)
S0, A is maximal in the clause C
A is productive during model construction, Iy F A
and... C’ will remain false in Iy for all clauses
Property 12 is the model existence theorem.
Let > be a clause ordering, and
let N be saturated with respect to Res, and suppose L ¢ N
then Iy~ E N, so, the Interpretation is a model of the set (with no counterexamples)
Proof property 12:
Given L ¢ N, suppose the model existence theorem is wrong, so ... LEND
Let C be minimal in > such that Iy~ ¥ C , @ (where C € N)
then, since C is false in Iy, Cis not productive(3)
and, as C # L, there exists a maximalatom AinC,ie. C=C viA vilorCc=C v@‘”
so proving by contradiction and by cases
Case 1C=C" v
=1/ F-Aadly BC © o=I EAadly ¥C O
= someD=D"v @ produces A (where D € N) w
now, Res(D’V[]A,C v @ =Ry
S0, DPvC eN,andC>Dv o
But this means that there must be a clause smaller than C, which contradicts 2

Case 2:

c=Cv[A v A" =i EAadl ¥C

then, Factoring(C’ v[A] v [A)=C"Vv [A yields a smaller counter-example™
C v e N9

But this means that there must be a clause smaller than C, which contradicts @
Now to the question ... ..
In case 1 we are considering a valid model Iy~ E N where ...

Dv(C
D’ v_%
C vi

If property 11(v) were not true, then D’ F N is possible. In this evel‘f, e restriction on A to be
maximal in clauses 2 and 3 is lifted. We are hence free to re-order thege clauses so that C* v @

is indeed minimal, and the proof by contradiction in case 1 fails, an the model existence theorem
is not true.
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6. Let > be a “total and well founded ordering’ on ground atoms such that, if the atom A contains
more symbols than B (not counting brackets), then 4 > B.
Let N be the following set of clauses:
1. —q(z, )
—=q(fx), y) v ¢(fifx)), y) v P(X)
—p(a) v —p(fla)) v g(fa), fifa))
P(Rx) v p(e(y))

“hkh W

—p(g(a) v p(ifa))
o

I assume: p(_) and q(_) are valid predicates:, f(_) and g(_) are valid functions, x, y and z are valid

varigbles, adpavili oot~ —— — oo~

Ts= {a, fla,a), g(aa), ...
Aa,fa,a)), ...
fif(a,a), fa,a)), ...
f(f(fa,a),a), fa,a)), ...
4
(a) Which literals are strictly maximal in the clauses of N7 Justify.
1 —q(z, z)
There is only one literal in the clause, so for all substitutions of z for ground terms,
—q(z, z) is strictly maximal. =

2. —q(fix),y) v g(fifx), y) v p(x)
In these terms, the first has 3 symbols, the second has 4 symbols and the third has
1 symbol inside the predicate brackets. Hence, q(f{f(x)), y) appears to be strictly
maximal under the stated ordering.
However, there are two variables here (x and y), which could be substituted for
ground atoms in different ways. Since, the term-3 only contains X, and both term-1
and term-2 contain both x and y, it is possible to substitute y by a ground atom
with more brackets than x, and outsize term-3. The competition is hence between
term-1 and term-2.
Any substitution of x and y must be consistent across term-1 and term-2. The
structure of these terms means that g({/(x)), y) will always be larger. Hence the
first impression that g(f#(x)), y) is strictly maximal under the stated ordering was
correct \/

3. =p(@)Vv-p(fa) v q(fa), fifa)
There are no substitutions possible, since these are already ground terms. In these
terms, the first has 1 symbol, the second has 2 symbols and the third has 5
symbols inside the predicate brackets. Hence, g(f(a), f(fa))) is strictly maximal
under the stated ordering. v’

4. p(x) v p(e)

both terms have 2 symbols inside the predicate brackets, and so there is no order
defined. Under non-strict ordering both would have been maximal, if the same
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substitution was made for x and y, but under strict ordering there would be no
maximal literal in this clause. It is of course possible to substitute x and y for
ground atoms in different ways, so that either term-1 or term-2 would be maximal.
This indicates that there is no maximal literal in this clause.

5. —p(gla) v p(fifia))

There are no substitutions possible, since these are already ground terms. In these
terms, the first has 2 symbols, the second has 3 symbols inside the predicate
brackets. Hence, p(f{f{a))) is strictly maximal under the stated ordering. /

So, strictly maximal literals are boxed below

L
—q(A(%), ¥) v gAAX), y) v p(x)
—p(a) v —p(2)) v g({(a), =)
P(x) v p(gy))
—p(g(@) v

N o

(b)  Define a selection function S such that N is saturated under Res” s. Explain.

1. —g(z. Z)

2. —q(fx),y) v a(fifix)). v) v p(x)
3. —p(a) v —p(fa)) v g(f(a). f(f(a))
4. p(fx) v pEy)

5. —p(g(a)) v plfiftal))

The strictly maximal literals are underlined and in gray. There is no strictly maximal literal in
clause 4.

The rules for resolution with ordered selection (Res”s) are as follows. If all the rules do not apply, then resolution
need not be preformed.
If the complimentary clauses have the fomCv A —-BvD

(CvD) where o is the mgu(A,B)

6] Ao strictly maximal wrt. Co
(i) nothing is selected in C by S
(iii) either —B is selected, or else, nothing is selected in —B v D and —Bg is maximal wrt. Do

If the chosen selection function is S, and the clause is C, then for S : C — any negated predicate.

Selected terms are boxed.
1. —qg{Z. Z
2. —q(Ax), y) v gAAx). v} v p(x)
3. ﬂjvbﬁﬁgﬂvgﬁfgaz: f(f(a)))

e
4. (X)) v pey) M/}
5. %Q plfifia)})

If we just consider whether it is necessary to apply resolution to these clauses (not whether it
would be successful, or what the mgu is).
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There are no clauses which can be equivalent to ‘C v A’.... since a negative literal is selected in
each clause except 4 (thus excluding 1,2,3,5), and neither literal is strictly maximal in 4.
Hence, there can be no resolution performed. (Note, clauses 1, 2, 3, 5 could all be equivalent to

‘CvA).

There are similar rules for ordered positive factoring with selection

If the clauses have the form Cv A vB
(Cv A where o is the mgu(A,B)

(i) Ao strictly maximal wrt. Co
(ii) nothing is selected in C

Considering each clause in turn,

For clause 1, no factoring is possible.

For clause 2, no factoring is possible, and also fails for (ii)

For clause 3, no positive factoring is possible, and also fails for (i1)

For clause 4, not possible to factor, but fails for (i)

For clause 5, no factoring is possible :

No new terms can be created by resolution where factoring may be an issue, since no resolution
has been performed.

Hence, no factoring need be performed.

Hence, no inferences need to be performed on these clauses, and so this selection function gives
N that is saturated under Res” s,

W,
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7 Let > be a total and well founded ordering on ground atoms such that, if the atom A contains
more symbols than B, then 4 > B.
Let N be the following set of clauses:

p(x) v p(fx)

() v —p(IAY))

Use resolution and the clause ordering based on > to derive L from . Justify each step.

Assume p is a valid predicate, f is a valid unary function, and x and y are valid variables in the
language . There must be at least one constant term. Let that constant term be a.

Hence, T - { p(a), p(f{a), p(f(f(2))), .-}

The strictly maximal literal in these terms under the stated ordering (for all possible substitutions)
is show by the boxes ...

1. p(x) v p(x

2. v '

This ordering of terms is determined, since only variable x appears in clause 1, and only
variable y appears in clause 2, and hence any substitution must maintain the discrepancy in the
number of symbols in terms 1 and 2 of these clauses.

Applying the substitution ¢ = { X/f(y)) } , the mgu between the maximal terms in clauses 1 and 2

3. pfy)) v )
4. p(y) v

As a result of the model existence theorem, it is only necessary to resolve and factor on maximal
literals. Hence...

5. A vAO) Res34) v~
This cannot be unified with 2. No other inferences are possible.jother than between 1 and 2, and
in every case, all other possible substitutions would lead to a similar situation.
No other viable inferences are hence possible.
The proof hence terminates. (Completeness of resolution)
And the proof fails.

So L or the empty clause has been not derived from N.

(Incidentally, this means that the original formula that gave rise to the above clauses is

satisfiable).

~

\
\

11
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8. Let the ordering be defined by
q > p(as) > p(as) > p(az) > p(a1) > o).
Let N be the following set of clauses:
1. qvqvp(a)

2. qvp(a)

3. p(as) v p(az) v p(ao)
4. p(ag) vp(a;) Vp(ao)
5. p(az) A\ -—1p(a1)

6. —-p(al) \4 p(al)

7. p(a) v p(ao)
Which of the clauses in N are redundant with respect to N? Justify.

Consider the ordering q > p(as) > p(as) > p(az) > p(a1) > p(ao).
The maximal clauses are boxed below.
1. dvidv @)
v p(al)
as) v p(az) v p(ao)
az) v p(a1) v p(ao)
a) v —plar)
—p(an) v plar)
7. p(ar) v p(a0)
so the clausal ordering that results from the ordering of literals that was specified is ...
1>2>3>4>5>6>7

Now considering redundancy...

AN o

1 g phan)
2 qvp(a)
3 Plasyvplas)yvplag)
4 plad)wplab-vpad)
5 p(a2) v —p(ar)
6 —pla)-vplas)
7 p(a1) v p(ao)
The relevant sections of the notes are ....
Definition of redundancy

Let N be a set of ground clauses, and C a ground clause (not necessarily inN)
Cg is redundant with respect to N, if
there exists C;...C, € N, (n >= 0) such that

Cr> all Ci
And, C;..C,F C
Property 18:
6] IF C is a tautology ( = C), then C is redundant wrt. any set of clauses N

(i) Co < D, then D is redundant wit. N U {C}
(iii) Co c D, then D v Eo is redundant wrt. N U {C v L, D} (where I denotes the complement of L)

- clause 6 is a tautology of the form A v —A thjc/|h'3a/lways true. Hence clause 6 is redundant
with respect to N. (property 18)

12
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- clause 2 is a subset of clause 1, that is

qvp(a) c qvavpa) (/

so clause 1 is redundant (property 18)
- in the same way clause 7 is a subset of clause 4, \/

pa) vpa) cplas)vp(a) v p(ag)

so clause 4 is redundant (property 18)
- in a similar way, Res(7,5) = [p(a0) ; p(a2)]

and this is a subset of clause 3, and so clause 3 is also redundant

(justified by definition of redundancy)
Are there any more redundant clauses now considering the ordering of the literals as specified?

Building a model for these clauses, using the ordering determined above

Clauses in set N Candidate model, Ic Ac Comment

7 _p(ay) v p(ao) ) { p(a;)} | Productive

6 —pla) v p(a) { (a1} %) true in Ic

5 pla) v —p(a;) { p(a1)} { p(ay)} | Productive

4 plas) v p(a) v p(ao) { p(ar), p(az)} %) true in Ic

3 plas) v p(az) v plao) { p(a1), p(22)} %) true in Ic

2 gvp(an) { p(a1), p(a2)} %) true in Ic

1 qvqvp@) { p(a1), p(a2)} %) no strictly maximal

The strictly maximal literals are underlined and in gray. There are no counter-examples.
So the final model is Iy = { p(a1), p(a2) }
Since non-redundant clauses are either (i) productive or (ii) minimal counter-examples, as
expected, clauses 1, 2, 3, 4 and 6 are confirmed to be possibly redundant, and there are two
certainly non-redundant clauses, 5 and 7 (no need to examine these further!)

5. p(az) Vv —up(al)

7. p(ay) v p(ao) (the smallest clause)
So, we now need to determine whether clauses 2 and 3 are redundant in in ordered...

Can 2. q v p(a;) be shown to be true from clauses 3 to 7?

No. Hence 2 is non-redundant.
(Likewise, it’s worth checking that clause 5 cannot be show to be true from clauses 6 and 7,
which is the case).

Hence the final conclusion is that ... clauses 1, 3, 4 and 6 are redundant. /

[D

~

13
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9, Redundant clauses remain redundant, if the theorem prover derives new clauses and adds them
to the current set of clauses. Prove:
If N and M are sets of clauses and N c M, then Red(NV) c Red(M).

Considering the definition of redundancy,
Let N be a set of ground clauses, and C a ground clause (not necessarily in N)
Cr is redundanTwith respect to N, if
there exists C;...C, € N, (n >=0) such that
Cr > allCi,
And, C,...CF Cr

Intuitively this is correct. If there are ‘essential clauses’ and redundant clauses (R) in N, then
these same clauses are present in M. The relationships that made R redundant in N, still hold in
M, because there are no less elements in M, and the same subset of smaller clauses that made
redundant is present in M. \}/

Consider a set of clauses N, in which one is redundant (Cg;), and the clauses which cause this
redundancy are C,...C;.

N= {C]...Ci, CRl }
Hence Ciy > aliC,..C, dhd G GEG

Now let the theorem prover derive new clauses, which may or may not be redundant, and add
them to the clauses in N, such that M is a superset of N (N < M)
M=4C..CDi.. . DyCri Cri }
Now assume Cg; is no longer redundant in M
so either Cri1 > allC;...C;  no longer holds
or C1..CiF Cr is no longer true
neither of which is possible
so, Cr; is redundant in both N and M

Having shown that clauses redundant in N are also redundant in M, then whether or not new
redundant clauses are added in M, Red{N) < Red(M)

e ' o
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10. Consider the following.

1. (AABAC)—D
(—4AAM)y—L
(FAE)— =D
GAMy—C
(-BAF)—-H
(-DABAEY—G
MA-D—J
HAM)—K
9. KAIARL)Y—E
10 (RHAF)—L
1. (MAL)—F
122 KAIAA)—E
13.  Therefore M — —F

QNN E LN

(a) Use the standard transformation to convert the problem in clausal form.

This statement can be re-written in logic format as ...

(AABAC)—D) A ((kAAM)—L) A ((FAE)—aD)A

((GAM)—=C) A ((=BAF)—>-H) A ((DABAEY=G)A

(MA-D—J) N ((HAM)—K) A ((KAJA=L)—E)A

((RHAF)— L) A ((MALY—>-F) A ((KAINA)—E)
E(M— =F)

Converting into clausal form...
Applying standard resolution to the left-hand side

(~(AABACYvD) A (~(m4dAMVL) A (~(FAE)yv=D) A
(~(GAM)VC) A (~(-BAF)v-H) A (~(=DABAEYVG)A
(~(MA=D)vJ) A (~(HAM)VK) A (~(KAJA=LYVE) A
(~(-HAF)vL) A (—~MALYyv-F) A (~(KAIANA)VE)
(applying definition of —)
Now only A, v, — connectives remain

(m4v-Bv-=C)vD) A (m—Av-M)VvL) A (=Fv-=E)v-D)na
(-Gv-MvC) ~a (w—Bv-F)v-H) A ((=—=Dv-=BvVv-=E)vG)A
(-Mv—=—-D)vJ) A (mHv-M)vK) ~n (=Kv—Jv—-L)VE)A
(=—Hv-F)yvL) A (-Mv-aL)yv—=F) A ((wKv-alv-A)VE)
(applying deMorgan’s Laws, once or twice)

15
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{(m4Av—-Bv-=C)vD) A (Av-M)vL) A (mFvaE)v-aD)Aa

(-Gv-MVvC) A {(Bv=F)v-H) A (DvaBv-E)yvG)a

(=MvIDvJ]) A ({(m-Av-M)vK) A (mKv—=JVvIL)VE)A

(Hv-F)vLl) A {(—-Mv-L)v=F) A ((wKv=IvvA)VE)
(—1—|Z=Z)

(m4v—-Bv-CvD) A Av-MvL) A (=Fv—=E vaD)Aa
(-Gv-MvC) A (Bv—Fv-H) A Dv-Bv-=EvG) A
(—MvIvJ) A (-Hv-MvK) A (wKv—-JVvLVvE) A
(Hv-FvL)a (—~Mv-Lv-F) A (wKvalv-4VvE)
(removing additional brackets)
This is now in NNF,
and CNF

Re-writing directly in clausal form gives ...

{{—d;-B;-C; D} M-8 Ll Edi ok (D] |-G, ~M;C], [B;=F ;=]
[D;=B;-E;GLI=M; 10} |- . = K] [k; - L. EY [H;-F;L)
[« L =P K = A R ]

The original above formula has the form X F Y
To decide whether this statement is satisfiable we need to show that ...

X U {—Y} is unsatifiable

= —(—~Mv =F) (definition of —)
= =M A ——F (deMorgan’s law)

so, the full clausal form to enter resolution for the original expression, is
{[+4;-B;-C;D], [4;-M; L) [<F;—E ;D] [-G; M;C], B~ =dd]
[D;-B;—=E;GL[=M 1. J] [+H,~M K] [-K;=/; L, B}, li=F 4]
[-M; =L —F ), [K; -l -4 E],
[AM], [F1}

pd

t//
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(b) Using an ordering or a selection function, or both, describe a strategy for minimizing the
number of inferences necessary to find a contradiction. How many inferences did you need to
prove the problem?

{
[-A;-B;-C;D], 1))
[A;-M;L], 2)
[-G;-M;C], 4)
[B;—=F;—-H], &)
D.-B;-£.G] (6)
[-M;I;7] (7)
[-H;-M;K], )
=L E] ®)
120 e P2 3 (10)
[-K;=I;=AE], (12)
[M], (13)
[F] (14)

}

Choosing to use only an ordering, and using the strategy that negative literals are maximal inany -

clause as infrequently as possible. i

Going through the clauses gives
D> A;B;C )
A;L>M )
C> G;M 4
B> F;H] (%
D;G> B;E (6)
I;J> M )
K> H;M ®
L:E> X;J ©
L;H> F (10)
E> K;I;A (12)

Combining these requirements gives ... (one of many possible combinations)
D> C> G>E> A>» L>B> K>H>J>1>F> M

So, marking the strictly maximal clauses {

[+A&;-B,-C;B] 4y
[A;-M;L], ¥))
[-F;-E ;D] 3
[-G;-M;C] @
[B;—F;-H], (5)
;- B;-E;G] )
[-M;I;]] Q)
[-H;-M;K], ®
[-K;-T;L;E] ®
[H;-F;L] (10)

17
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[-M;=L;—F], (1)
[-K;-I;-AE] (12)
M], (13)
[F] (14)

}
Now resolution is deterministic.(performing factoring when required)
16. Res(3,6)=[ —F ; =B ; —E ; G]
74 Res(10,11)=[ H; —-M ; —F]
18. Res(4,15)=[=G ; -M ; —A; -B; —F ; =E]
19. Res(16,18)=[ -M ; —A ; -B ; —F ; —E]
20. Res(9,19)=[ —F ; =M ; =A ; —B; —K;=J;L]
21. Res(12,19)=[-K; —-I; -M; =A;-B;-F]
22. Res(2,20)=[ —=F ; -M ; —B;—-K; -J; L]
23. Res(221)=[L;-K;—I;-M; —B; —F]
24. Res(11,22)=[-M ; —F ; =B ; —K ; —J ]
25: Res(11,23)=[ —-K; -1 ; -M ; =B ; —F]
26. Res(5,24)=[ -H; M ; —F ; =K ; —J]
217. Res(5,25)=[ ~H; =K ; -I; -M ; —F]
28. Res(8,26)=[=H ; -M ; —F ; —J]
29. Res(8,27)=[=H ; —I; -M ; —F]
30. Res(17,28)=[ —M ; —F ; =J ]
31. Res(17,29)=[ =i; -M; —F ]
32. Res(7,30)=[ =M ;I ; —F ]
33. Res(31,32)=[ -M ; —F]
34, Res(14,33)=[ =M]
35.  Res(34,13)=[]
21 inference steps (neglecting negative factoring)
Consider a scheme that makes negative literals maximal as often as possible in the original. Then
run the derivation until a problem occurs, and swap the predicates that cause the problem in the
ordering list, and reassign and restart. The ordering given by this procedure is ...
M>F>L>H>B> K> A>I>J>E>D>C> G
This approach takes on-board the lessons from the scheme above, where many negative factoring

are hidden in the inference count.

{
[-A;-B;-C;D}] 49)]
[A;=M;L] @)
(= ;8 ;=b] 3)
[-G;=M;C], )
[B;=F;-H], )
[D;-B;-E;G], (6)
[=M;I;7T], O]
[-H; =M ;K], ®)
[-K;-J;L;E] ©
[H;=F;L], (10)
[-M; L -F] 1n
[=K;-I;-AE] (12)*
M}, (13)
(E] 14)

} Now resolution is deterministic

15 Res(13,2)5[ A; L] =M, A; =M ;L]

16 Res(13,4)=[-G; C] =[M; -G ; =M ; C]
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17 Res(13,7)=[1; J] =M; =M ;1,7]

18 Res(13,8)=[=H ; K] =M, -H; =M ; K]
L Res(13,11)=[ -L; =F] =[M; =M ;=L ; —F]
20 Res(14,3)=[-E ;-D] =[F;=F;—-E ;D]

21 Res(14,5)=[ B ; =H] =[E; B ; =F ; —H]

22 Res(14,10)=[H ; L] =[F;H;=F ;L]

23 Res(19,14)= L] =[-L ; =F][F]

24 Res(23,9[ =K ; =J;E] e[ =L]1[-K;—=J;L;E]
25 Res(23,15)=[A] =[=L][A;L]

26 Res(23,22)=[H] ={=L][H;L]

27 Res(18,26)=[K] =[=H ; K][H]

28 Res(21,26)=[B] =[ B ; =H][H]

29 Res(12,27)=[-1; A ; E] =[=K ; -l ; -A ; E][K]
30 Res(1,28,)<[=A ; -C; D] =[-A; =B ; -C; D ][B]
31 Res(6,28)=[D; =E;G] =[D;=B;—-E;G][B]
32 Res(12,27)=[-1; =A ; E] =[=K ; -1; —A; E ][K]

33 Res(24,27)=[=J ; E] = =K ; —J ; E][K]
34 Res(25,30)=[-C ; D] =24, =C ; DiJA]
35 Res(25,29)=[-1 ; E] =1 ; =A  EjjA]
36 Res(17,35)={], E] =13} ; Bl
37 Res(33,36)=[E, E] =L Ej{ oI ; E]
38 Fac(37)=(E] =il . B
39 Res(20,38)=[=D] =[=E ; -D]E]
40 Res(34,39)=[—C] =[-C ;D] [-D]
41 Res(16,40)=[=G] =[-G; C] [-C]
42 Res(31,38)=[D; G] =D ; =E , G] [E}
43 Res(42,39)=[G] =D ; G] [=D]
44 Res(41,43)=] =[=G] [G]

30 inference steps

In this scheme the number of inferences does include any ‘hidden’ negative factoring, and so is
much better than the first scheme.

Several selection schemes were considered, but none gave anything as efficient as the
second scheme above, including when combined with ordering.

(c) Use MSPASS to find a proof of the minimal length and submit the input file together with the
proof by email. Specify which options were used to obtain the proof.

This question has been withdrawn, but I include my prefiminary MSPASS files and output
=

N Qr == / N |
rece. ’u@( g
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11. Use the expansion rules from Lecture I1.8 to compute maximal, strict semantic tableaux for
the following sets of formulae and explain whether the branches/tableaux are closed. Justify steps
in the derivation. (presumably this really means lecture 9)

@ A{AA=p—9—C®ve)}

L=((p—=9—0C@Vvd)

2:(-p—9

3: —1@ Vv q)

4: —p

S —q

it
"\ '

lines 2 & 3. applying a-rule on 1: o is =(F — G) = (a; isF) and (0, is —G)
lines4 & 5. applying a-rule on 3: jais —(F v G) = (a; 1s ﬁ\F)"and (az is =G)
there are no more rules to apply to lines 4 and 5
lines 6 & 7. applying B-rule on2: B is (F— G) =(B; is—F)or (B, is G)
there are no more rules to apply to line 7
line 8 ——p=p (by negation elimination) on line 6

there are no more rules to apply to line 8

The left-hand branch is closed because lines 4 & 8 are complimentary (—p and p).
The right-hand branch is closed because line 5 and 7 are complimentary (—q and q).
This accounts for all the branches.

Hence the tableau is closed.

(Hence the original formula from, which the clauses above are derived, is satisfiable).

This tableau is maximal because all the a- and B-rules have been applied, and strict because they
have only be applied at most once.

20
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() {pvg -pvg pv—q, -pv—q}

I:pvgq
2:—pvq
3:pv—q
4: -pv—q
S:p//\ 6:q
/\ /\

6: —p 8:
. /\\

10: p 11: —q 12:p 13: —.q 14:p 15: —q 16 p 17: ﬂq

o N
:—xp31 —q

18:—p 19:-q ‘ \\ 24 —p 25 —q \,s

hN
N

\ 26:—p 27:-q 32:-p 33:-q

9:q

20: p 2l:-q

22: —p 23 —q

All of lines 1 to 4 are B formulae of the type |B is (F v G) gives B, is (F) or B, is (G)I.

Lines 5 and 6 arise from applying the rule to line 1

Lines 6 & 7, 8 & 9 arise from applying the rule to line 2.

Lines 10,11,12 & 13, 14,15,16 & 17 arise from applying the rule to line 3.

Lines 18,19,20,21,22,23 24 &25,26,27,28,29,30,31,32 &33 arise from applying the rule to line 4.

-The branch leading to 18, and to 19, and to 20, and to 21 is closed by lines 5 and 6 (p ,—p)
-The branch leading to 22 is closed by lines 5 and 22 (p ,—p)

-The branch leading to 23 is closed by lines 7 and 23 (q ,—q)

-The branch leading to 24, and to 25 is closed by lines 7 and 13 (q ,—q)

-The branch leading to 26, and to 27 is closed by lines 8 and 14 (p ,—p)

-The branch leading to 28, and to 29 is closed by lines 6 and 15 (q ,—q)

-The branch leading to 30 is closed by lines 16 and 30 (p ,—p)

-The branch leading to 31 is closed by lines 6 and 31 (q ,—q)

-The branch leading to 32, and to 33 is closed by line 6 and 17 (q ,—q)

This accounts for all the branches. Hence the tableau is closed.
As before, the derivation is strict and maximal.
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12. Prove that the following set of formulae is unsatisfiable by using first-order semantic
tableaux. Justify each step.

{ =[ (vx p(x) A 3y 9()) = (p(AW) A 3z 4(2) )]}

Usually the first step in a proof is to negate the original formula, but here the negated formula has
already been given

1: {=[(Vx p(x) A Jy q(y)) = (p(Aw) A Tz 9(2) )1}
2 (Vxp(x)AJyq(y))
3:=( p(lw) A Iz q(z) )
4 Vxp(x)

s: Jy q(y)

o py X W Rond, -

7 q(vy)

8: —p(Auw)) 9: =3z q(z) -

10: ﬁq’(ﬁ)

lines 2 & 3. applying a-rule on 1: ja is —(F — G) =(o; is F) and (e, is =G)
lines 4 & 5. applying a-rule on 2: @ is (F A G) = (o, is F) and (o, is G)
(4) line 6 applying y—rule on 4:(y is)VxF = y(t) is F[x/t]
‘ substitution used { x/f{u} }\
for y—tules, we can make any substitution, and it is clear that this
| will be useful later in closing a branch
j line 7 applying o—rulé/on line 5: ]5 is-3xF = 6(t) is F [x/t][
[ substitution used { y/v; }\/

for 6—rules, we can makei/on\lz a substitution to that has not previously
been introduced. The choice 15 in how to name this unique variable, here v,

lines 8 & 9. applying B-rule on3: B is — (FA G) = (B1 is —F) or (B, is —=G)

This closes the left-hand branch since lines 6 and 8 are complimentary ( —.p(gu\),ﬁw LL vatnd

line 11 applying y-rule on line 9ty is —3xF = y(t) is —F [x/t]—\/ ey
substitution used { x/v; } it & (od “*"’"“3’3 :

for y—rules, we can mak 'dr{y substitution, and it'is clear that‘jthis
will be in closing a branch ...
This closes the right-hand branch since lines 10 and 11 (compli__lpentary —q(v1), ¢(v1))

The tableau is c/osed, and hence, the formula is unsatisfiable.
@ ) =



